Two Novel Myrinsol Diterpenes from Euphorbia prolifera

Wan Jin ZHANG, Dao Feng CHEN*, Ai Jun HOU

Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 200032

Abstract: Two novel diterpenes, Euphorprolitherin A (1) and Euphorprolitherin B (2), were isolated from the roots of *Euphorbia prolifera*. Their structures were elucidated on the basis of spectroscopic methods.

Keywords: *Euphorbia prolifer*a, Euphorbiaceae, myrinsol diterpenes, euphorprolitherin A, euphorprolitherin B.

Euphorbia prolifera (Euphorbiaceae) is used as a folk medicine for the treatment of inflammation and tumors in China¹. Previously, eight diterpenes and one steroid from this plant were isolated and characterized by other groups²⁻⁵. Our phytochemical investigation on this plant led to the isolation of two novel myrinsol diterpenes named euphorprolitherin **A** (1) and euphorprolitherin **B** (2). This paper deals with their structural elucidation.

Euphorprolitherin **A** (1), was obstained as colorless cubes and gave prominent IR absorption (1714 cm⁻¹) of carbonyl groups. The ESI mass spectrum of **1** exhibited a quasi-molecular ion $[M+Na]^+$ at m/z 773.4, indicating its molecular weight of 750. In conjunction with the analysis of the NMR spectra, the molecular formula was assigned as C₃₈H₅₄O₁₅, from which twelve degrees of unsaturation was deduced. The signals at δ 2.10, 2.08, 2.06, 1.98 and 1.96 in the ¹H NMR spectrum showed five 3H-singlets for acetate groups, respectively. The vicinal coupling signals between a quartet (δ 2.40, q, 2H, J = 7.0 Hz) and a triplet (δ 1.17, t, 3H, J = 7.0 Hz) indicated one propionate group. The existence of one 2-methylbutanoate group [δ 2.40 (m, 1H), 1.83 (m, 1H), 1.50 (m, 1H), 1.21 (d, 3H, J = 6.9 Hz) and 0.96 (t, 3H, J = 7.5 Hz)] was also evident.

^{*}E-mail: dfchen@shmu.edu.cn

Accordingly, **1** was presumably substituted by seven ester groups. Four oxymethine protons geminal to ester functions [δ 5.89 (dd, J = 11.0, 1.4 Hz), 5.57 (s), 5.37 (d, J = 4.0 Hz) and 4.83 (d, J = 6.5 Hz)] suggested that the other three ester groups were located at quaternary carbons. Additionally, the signals of four tertiary methyl groups [δ 1.63, 1.52, 1.39 and 1.15 (each s, 3H)], two vicinal olefinic protons [δ 6.16 (ddd, J = 10, 6.5, 1.4 Hz) and 5.90 (dd, J = 10, 6.0 Hz)] and an oxygenated methylene group [δ 4.09 (d, J = 8.8 Hz) and 3.47 (dd, J = 8.8, 1.4 Hz)] were also observed in the ¹H NMR spectrum. In the ¹³C NMR and DEPT spectra of **1**, twenty carbon signals were observed, which supported the result of ¹H NMR spectrum. With the consideration of 12 degrees of unsaturation, of which 7 resulted from ester residues, 5 degrees of unsaturation for a tetracyclic skeleton with one double bond were revealed. Comparison of the above data with those of myrsinol derivatives⁶ proposed that **1** was different from them by the absence of the typical bond between C-10 and C-18. This was verified by the chemical shifts of C-10 (δ 85.8, s) and C-18 (δ 25.3, q). Thus, **1** was a diterpene heptaester of a new parent alcohol related to myrsinol.

On the basis of 2D-NMR spectra (¹H-¹H COSY, HMQC and HMBC) of **1**, the unambiguous assignment of all protons and carbons were achieved, which also clarified the positions of the ester groups. The following HMBC cross peaks: H-3 (δ 5.37, d, *J* = 4.0 Hz) with the signal of propionyloxy group (δ 173.6, s); H-5 (δ 5.89, dd, *J* = 11.0, 1.4 Hz) with the acetoxy signal at δ 169.2 (s); H-7 (δ 4.83, d, *J* = 6.5 Hz) with the acetoxy signal at δ 169.2 (s); H-7 (δ 4.83, d, *J* = 6.5 Hz) with the acetoxy signal at δ 175.4, s) disclosed that the propionyloxy, two acetoxy, and the 2-methylbutanoate groups were located at C-3, C-5, C-7, and C-14, respectively. Three quaternary carbon signals at δ 87.0 (C-2), 85.8 (C-10), and 90.2 (C-15) directed the other three acetoxy groups at C-2, C-10, and C-15, respectively.

The relative stereochemistry of **1** was decided by the NOESY experiment. The NOE effects: H-4 α with H-3; H-7 with H-17a, b and H-11 α with Me-20 supported the α -orientations for H-3, H-7 and Me-20. The NOE correlations: H-1 β with Me-16; H-12 β with H-5 and H-12 β with H-14 assigned the β -orientations for M-16, H-5, and H-14. Consequently, compound **1** was identified as 14-desoxo-2 α , 5 α , 7 β , 10,

Two Novel Myrinsol Diterpenes from Euphorbia prolifera

746

15β-O-pentaacetyl-3β-O-propionyl-14α-O-(2-methylbutryl)-10, 18-dihydromyrinsol.

С	1	2	С	1	2
1	46.6 (t)	47.1 (t)	2-OAc	169.8 (s)	169.4 (s)
2	87.0 (s)	87.0 (s)		22.4 (q)	22.4 (q)
3	78.3 (d)	78.1 (d)	5-OAc	169.2 (s)	169.3 (s)
4	47.6 (d)	47.5 (d)		20.9 (q)	20.9 (q)
5	68.6 (d)	68.6 (d)	7-OAc	170.4 (s)	170.4 (s)
6	53.3 (s)	53.6 (s)		21.0 (q)	21.0 (q)
7	62.8 (d)	63.0 (d)	10-OAc	170.8 (s)	170.7 (s)
8	125.9 (d)	125.9 (d)		22.5 (q)	22.5 (q)
9	129.9 (d)	130.0 (d)	15-OAc	168.5 (s)	168.5 (s)
10	85.8 (s)	85.9 (s)		22.3 (q)	22.3 (q)
11	44.7 (d)	44.7 (d)	3-OPr	173.6 (s)	173.7 (s)
12	37.1 (d)	37.1 (d)	1'	28.0 (t)	28.0 (t)
13	90.1 (s)	89.9 (s)	2′	8.8 (q)	8.8 (q)
14	72.5 (d)	73.2 (d)	14-OMeBu	175.4 (s)	
15	90.2 (s)	90.1 (s)	1″	40.6 (d)	
16	18.9 (q)	18.8 (q)	2″	26.9 (t)	
17	70.0 (t)	69.8 (t)	3″	11.7 (q)	
18	25.3 (q)	25.2 (q)	4″	15.7 (q)	
19	21.4 (q)	21.3 (q)	14-OBz		165.8 (s)
20	24.2 (q)	24.4 (q)	1″		130.0 (s)
			2", 6"		130.1 (d)
			3″, 5″		128.4 (d)
			4″		133.4 (d)

Table 1 ¹³C NMR Data for Compounds 1 and 2 (100 MHz, CDCl₃, δ in ppm)

Euphorprolitherin **B** (2) was obtained as colorless needles from petroleum ether–acetone. The ESI mass spectrum of 2 produced a quasi-molecular ion $[M+Na]^+$ at m/z 793.4, suggesting the molecular weight of 770. In combination with the analysis of the NMR spectra, the molecular formula was deduced to be $C_{40}H_{50}O_{15}$. The comparison of the NMR spectra of 1 and 2 disclosed that the 2-methylbutyryloxy group of 1 was replaced by a benzoyloxy group in 2. Thus, 2 was characterized as 14-desoxo-2 α , 5 α , 7 β , 10, 15 β -O-pentaacetyl-3 β -O-propionyl-14 α -O-benzoyl-10, 18-dihy-dromyrinsol.

Euphorprolitherin **A** (1): $C_{38}H_{54}O_{15}$, colorless cubes, mp 192-195°C; IR (KBr) $v(\text{cm}^{-1})$ 1741, 1370, 1246, 1131, 1098, 1019; EIMS *m/z* 649 (8), 630 (4), 589 (2), 570 (7), 529 (3), 510 (4), 497 (2), 451 (2), 437 (3), 377 (5), 293 (27), 43 (100); ESIMS *m/z* 773.4 (100) [M+Na]⁺; ¹H NMR (400MHz, CDCl₃) δ 3.21 (d, 1H, *J* = 17.3 Hz, H-1 α), 2.40 (d, 1H, *J* = 17.3 Hz, H-1 β), 5.37 (d, 1H, *J* = 4.0 Hz, H-3), 3.70 (dd, 1H, *J* = 11.0, 4.0 Hz, H-4), 5.89 (dd, 1H, *J* = 11.0, 1.4 Hz, H-5), 4.83 (d, 1H, *J* = 6.5 Hz, H-7), 6.16 (ddd, 1H, *J* = 10, 6.5, 1.4 Hz, H-8), 5.90 (dd, 1H, *J* = 10, 6.0 Hz, H-9), 3.18 (m, 1H, H-11), 3.07 (d, 1H, *J* = 3.0 Hz, H-12), 5.57 (s, 1H, H-14), 1.39 (s, 3H, H-16), 4.09 (d, 1H, *J* = 8.8 Hz, H-17a), 3.47 (dd, 1H, *J* = 8.8, 1.4Hz, H-17b), 1.63 (s, 3H, H-18), 1.52 (s, 3H, H-19), 1.15 (s, 3H, H-20), 2.10, 2.08, 2.06, 1.98, 1.96 (each s, 3H, 5×OAc), 2.40 (q, 2H, *J* = 7.0 Hz, H-1'), 1.17 (t, 3H, *J* = 7.0 Hz, H-2'), 2.40 (m, 1H, H-1″), 1.83 (m, 1H, H-2″), 1.50 (m,

1H, H-2"), 0.96 (t, 3H, *J* = 7.4 Hz, H-3"), 1.21 (d, 3H, *J* = 6.9 Hz, H-4").

Euphorprolitherin **B** (2): $C_{40}H_{50}O_{15}$, colorless needles, mp 184-186°C; IR (KBr) v (cm⁻¹) 1740, 1480, 1370, 1245, 1100, 1018, 714; EIMS *m/z* 710 (1), 669 (6), 650 (5), 609 (2), 590 (9), 530 (4), 470 (3), 456 (5), 105(85), 43(100); ESIMS *m/z* 793.4 (98) [M+Na]⁺; ¹H NMR (400MHz, CDCl₃) δ 3.31 (d, 1H, J = 17.4 Hz, H-1 α), 2.37 (d, 1H, J = 17.4 Hz, H-1 β), 5.41 (d, 1H, J = 4.0 Hz, H-3), 3.75 (dd, 1H, J = 11.0, 4.0 Hz, H-4), 5.96 (dd, 1H, J = 11.0 Hz, H-5), 4.85 (d, 1H, J = 6.5 Hz, H-7), 6.19 (ddd, 1H, J = 9.8, 6.5, 1.4 Hz, H-8) , 5.91 (dd, 1H, J = 9.8, 5.5 Hz, H-9), 3.20 (m, 1H, H-11), 3.20 (m, 1H, H-12), 5.83 (s, 1H, H-14), 1.32 (s, 3H, H-16), 4.17 (d, 1H, J = 8.8 Hz, H-17a), 3.53 (dd, 1H, J = 8.8, 0.8 Hz, H-17b), 1.64 (s, 3H, H-18), 1.55 (s, 3H, H-19), 1.23 (s, 3H, H-20), 2.14, 2.10, 2.00, 1.98, 1.70 (s, each 3H, 5×OAc), 2.37 (q, 2H, J = 7.5 Hz, H-1′), 1.16 (t, 3H, J = 7.5 Hz, H-2′), 8.09 (d, 2H, J = 7.6 Hz, H-2″,6″), 7.59 (t, 1H, J = 7.6 Hz, H-4″), 7.45 (t, 2H, J = 7.6 Hz, H-3″,5″).

Acknowledgments

We wish to thank the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of the Ministry of Education, and the Med-X Foundation from Fudan University.

References

- 1. "Folk Medicinal Plants of Yunnan", Kunming Institute of Botany, Academia Sinica, Kunming, **1970**, *1*, 98.
- 2. D. G. Wu, B. Sorg, E. Hecher, J. Nat. Prod., 1995, 58, 408.
- 3. D. G. Wu, B. Sorg, E. Hecher, *Phytother. Res.*, **1994**, *8*, 95.
- 4. J. Zhang, C. J. Yang, D. G. Wu, Zhong Cao Yao, 1998, 29, 73.
- 5. J. Zhang, C. J. Yang D. G. Wu, Acta Botanica Yunnania, 1995, 17, 111.
- 6. F. Jeske, J. Jakupovic, W. Berendsohn, Phytochem. , 1995, 40, 1743.

Received 29 October, 2001